Kinetic Study of Waste Tire Pyrolysis Using Thermogravimetric Analysis

ACS Omega. 2022 May 2;7(19):16298-16305. doi: 10.1021/acsomega.1c06345. eCollection 2022 May 17.

Abstract

The influence of particle size (0.3 and 5.0 mm) and heating rate (5, 10, and 20 °C min-1) on the kinetic parameters of pyrolysis of waste tire was studied by thermogravimetric analysis and mathematical modeling. Kinetic parameters were determined using the Friedman model, the Coats-Redfern model, and the ASTM E1641 standard based on Arrhenius linearization. In the Friedman model, the activation energy was between 40 and 117 kJ mol-1 for a particle size of 0.3 mm and between 23 and 119 kJ mol-1 for a particle size of 5.0 mm. In the Coats-Redfern model, the activation energy is in a range of 46 to 87 kJ mol-1 for a particle size of 0.3 mm and in a range of 43 to 124 kJ mol-1 for a particle size of 5.0 mm. Finally, in the ASTM E1641 standard, the activation energy calculated was between 56 and 60 kJ mol-1 for both particle sizes. This study was performed to obtain kinetic parameters from different mathematical methods, examining how the particle size and heating rate influence them.