Anti-Inflammatory, Antiallergic and COVID-19 Main Protease (Mpro) Inhibitory Activities of Butenolides from a Marine-Derived Fungus Aspergillus costaricaensis

ChemistrySelect. 2022 Mar 29;7(12):e202200130. doi: 10.1002/slct.202200130. Epub 2022 Mar 28.

Abstract

Amid the current COVID-19 pandemic, the emergence of several variants in a relatively high mutation rate (twice per month) strengthened the importance of finding out a chemical entity that can be potential for developing an effective medicine. In this study, we explored ethyl acetate (EtOAc) extract of a marine-derived fungus Aspergillus cosatricaensis afforded three butenolide derivatives, butyrolactones I, VI and V (1-3), two naphtho-γ-pyrones, TMC-256 A1 (4) and rubrofusarin B (5) and methyl p-hydroxyphenyl acetate (6). Structure identification was unambiguously determined based on exhaustive spectral analyses including 1D/2D NMR and mass spectrometry. The isolated compounds (1-6) were assessed for their in vitro anti-inflammatory, antiallergic, elastase inhibitory activities and in silico SARS-CoV-2 main protease (Mpro). Results exhibited that only butenolides (1 and 2) revealed potent activities similar to or more than reference drugs unlike butyrolactone V (3) suggesting them as plausible chemical entities for developing lead molecules.

Keywords: Aspergillus; SARS-CoV-2 Mpro; butenolides; natural products; receptors.