Permafrost degradation is accelerating beneath the bottom of Yanhu Lake in the Hoh Xil, Qinghai-Tibet Plateau

Sci Total Environ. 2022 Sep 10;838(Pt 2):156045. doi: 10.1016/j.scitotenv.2022.156045. Epub 2022 May 18.

Abstract

Lakes on the Qinghai-Tibet Plateau (QTP) have notably expanded over the past 20 years. Due to lake water level rise and lake area expansion, the permafrost surrounding these lakes is increasingly becoming submerged by lake water. However, the change process of submerged permafrost remains unclear, which is not conducive to further analyzing the environmental effects of permafrost change. Yanhu Lake, a tectonic lake on the QTP, has experienced significant expansion and water level rise. Field measurement results indicate that the water level of Yanhu Lake increased by 2.87 m per year on average from 2016 to 2019. Cold permafrost, developed in the lake basin, was partially submerged by lake water at the end of 2017. Based on the water level change and permafrost thermal regime, a numerical heat conduction permafrost model was employed to predict future changes in permafrost beneath the lake bottom. The simulated results indicate that the submerged permafrost would continuously degrade because of the significant thermal impact of lake water. By 2100, the maximum talik thicknesses could reach approximately 7, 12, 16, and 19 m under lake-bottom temperatures of +2.0, +4.0, +6.0, and +8.0 °C, respectively. Approximately 291 years would be required to completely melt 47 m of submerged permafrost under the lake-bottom temperature of +4 °C. Note that the permafrost table begins to melt earlier than does the permafrost base, and the decline in the permafrost table occurs relatively fast at first, but then the process is attenuated, after which the permafrost table again rapidly declines. Compared to climate warming, the degradation of the submerged permafrost beneath the lake bottom occurred more rapidly and notably.

Keywords: Degradation; Heat conduction model; Qinghai-Tibet Plateau; Submerged permafrost; Yanhu Lake.

MeSH terms

  • Climate
  • Lakes
  • Permafrost*
  • Tibet
  • Water

Substances

  • Water