In-Situ Electrodeposition of Nanostructured Carbon Strengthened Interface for Stabilizing Lithium Metal Anode

ACS Nano. 2022 Jun 28;16(6):9883-9893. doi: 10.1021/acsnano.2c04025. Epub 2022 May 20.

Abstract

The lithium metal anode (LMA) is regarded as one of the most promising candidates for high-energy Li-ion batteries. However, the naturally formed solid electrolyte interface (SEI) is unsatisfied, which would cause continuous dendrite growth and thus prevent the practical application of the LMA. Herein, a stable electrolytic carbon-based hybrid (ECH) artificial SEI is constructed on the LMA via the in-situ electrodeposition of an electrolyte sovlent at ultrahigh voltage. This nanostructured carbon strengthened SEI exhibits much improved ionic conductivity and mechanical strength, which enables uniform Li+ diffusion, stabilizes the interface between the electrolyte and lithium metal, and inhibits Li dendrite breeding and Li pulverization. With the protection of this ECH layer, the symmetrical cells show stable long-term cycling performance over 500 h with an ultrahigh plating capacity of 5 mAh cm-2 at the current density of 5 mA cm-2. A full cell assembled with a Li[Ni0.8Co0.1Mn0.1]O2 or LiFePO4 cathode exhibits a long-term cycling life and excellent capacity retention.

Keywords: artificial SEI; carbon strengthened interface; lithium metal anode; nanostructured SEI; ultrahigh-voltage electrodeposition.