GC-MS-employed phytochemical characterization, synergistic antioxidant, and cytotoxic potential of Triphala methanol extract at non-equivalent ratios of its constituents

Saudi J Biol Sci. 2022 Jun;29(6):103287. doi: 10.1016/j.sjbs.2022.103287. Epub 2022 Apr 27.

Abstract

Triphala is a famous triherbal drug, comprising three herb fruits, including Terminalia chebula (Haritaki), Terminalia bellirica (Bibhitaki), and Phyllanthus emblica (Amalaki). It is enriched with vitamin C, polyphenols, flavonoids, sterols, saponins, etc., and is well-documented for its potent antioxidant, anticancer, chemoprotective, antimicrobial, and anti-inflammatory effects. This research was conducted to evaluate the synergistic antioxidative and cytotoxic potential of mixtures of the individual constituents of Triphala at their nonequivalent ratios along with the chemical characterization of individual constituents of Triphala to identify and quantify individual compounds. The antioxidative potential was measured using total antioxidant capacity (TAC), DPPH free radical scavenging assay, and total phenolic content (TPC) tests. The cytotoxic potential was assessed on brain cancer cells (N4X4) using MTT assay, and phytochemical characterization was performed by GS-MS analysis. Nonequivalent ratios of Triphala constituents exhibited significantly higher synergistic antioxidant and cytotoxic potential than the equivalent ratios of them. Moreover, the nonequivalent ratio where the quantity of Amalaki was doubled than the other two constituents showed the highest synergistic antioxidant and cytotoxic effect. GC-MS analysis of individual constituents of Triphala identified and quantified the presence of a wide array of compounds, and fatty acid, fatty acid ester, triterpene, and aminoglycoside remained the predominant class of compounds. Thus, it can be inferred that the observed bioactivities can be attributed to the phytocompounds characterized and extracts at the nonequivalent ratio of Triphala constituents where Amalaki is doubled can be more effective in treating oxidative degenerative diseases and glioblastoma.

Keywords: Antioxidant; Cytotoxicity; GC-MS; Nonequivalent ratio; Phytochemical characterization; Triphala.