Effect of Poly(trehalose methacrylate) Molecular Weight and Concentration on the Stability and Viscosity of Insulin

Macromol Mater Eng. 2021 Sep;306(9):2100197. doi: 10.1002/mame.202100197. Epub 2021 May 22.

Abstract

Instability to storage and shipping conditions and injection administration remain major challenges in treating chronic conditions with biopharmaceuticals. Herein, formulations of poly(trehalose methacrylate) (pTrMA) were successfully optimized to stabilize insulin without appreciably increasing viscosity. Polymers were synthesized (2,400 - 29,200 Da), and added to insulin at different concentrations. pTrMA maintained >95% intact insulin against 250 rpm at 37 °C for 3 hours with at least 10 mol. eq. of 5.0 kDa, 7.5 mol. eq. of 9.4 kDa, 5 mol. eq. of 12.8 kDa, 1 mol. eq. of 19.8 kDa, and 0.5 mol. eq. of 29.2 kDa polymers, compared to 13.1% of insulin alone. The lowest pTrMA concentration formulations were more viscous than insulin alone, but the highest viscosity, U-600 with 10 mol. eq. of 5 kDa pTrMA, was only 1.43 cP at 25 °C. This data demonstrates that pTrMA is a promising low viscosity additive to stabilize the diabetes therapeutic insulin.

Keywords: insulin; polymer; proteins; stabilization; therapeutic; viscosity.