Effect of Rice Husk-Based Silica on the Friction Properties of High Density Polyethylene Composites

Materials (Basel). 2022 Apr 28;15(9):3191. doi: 10.3390/ma15093191.

Abstract

Rice husk ash (RHA)-reinforced composites are now used in many tribological applications. We prepared two kinds of RHAs using different pretreatment and the same pyrolysis process, namely water-treated RHA (WRHA) and acid-treated RHA (ARHA). Comparing the two RHAs, the RHA pretreated with hydrochloric acid (HCl) was found to have a smaller particle size and a more uniform dispersion. Accordingly, the two kinds of RHAs were used as fillers and added to the high-density polyethylene (HDPE) matrix by an extrusion process. The results showed that the friction coefficient (COF) value of the composites with ARHA was reduced to 0.12 when an additional amount of 0.75 wt.% or 1.5 wt.%. WRHA was used as a filler to the amount of 1.5 wt.%, but the COF value was raised to about 0.21. The reason for this phenomenon may be due to its larger particle size and more severe abrasive wear. This work provides a method for making natural biomass fillers that can effectively reduce the COF of HDPE composites with slight decreases in mechanical properties.

Keywords: biomass; friction coefficient; high density polyethylene; rice husk ash.