A New BCN Compound with Monoclinic Symmetry: First-Principle Calculations

Materials (Basel). 2022 Apr 28;15(9):3186. doi: 10.3390/ma15093186.

Abstract

In this study, we predicted and investigated a new light-element compound B-C-N in Pm phase, denoted as Pm-BCN, using density functional theory. Pm-BCN is mechanically, dynamically, and thermodynamically stable. The elastic moduli of Pm-BCN are larger than those of other B-C-N and light-element compounds, such as P213 BN, B2C3, P4/m BN, Pnc2 BN, and dz4 BN. By studying the mechanical anisotropy of elastic moduli, we proved that Pm-BCN is a mechanically anisotropic material. In addition, the shear anisotropy factors A2 and ABa of Pm-BCN are smaller than those of the seven B-C-N compounds mentioned in this paper. Pm-BCN is a semiconductor material with an indirect and wide band gap, suggesting that Pm-BCN can be applied in microelectronic devices.

Keywords: anisotropy mechanical properties; carbon allotropes; electronic properties; semiconductor material.