Deflection Estimation Model for Prestressed Concrete Slabs with Plastic Inserts Forming Voids

Materials (Basel). 2022 Apr 21;15(9):3013. doi: 10.3390/ma15093013.

Abstract

Developed and patented more than 30 years ago, the system of slabs with plastic inserts has become very popular, and it is used all over the world today due to the significantly reduced cost of building construction. Experimental tests have shown that the behaviour of simple bending voided slab structures with plastic inserts during loading is very similar to that of solid slabs. However, their deflection and crack resistance are both slightly inferior to those of solid slabs. When using pretensioned reinforcement, the deflection and crack resistance of voided slabs exceed the above parameters for solid slabs. However, when using plastic inserts to form inner voids in slabs, their cross-section along the span becomes variable. In determining the stiffness of such slab, a problem arises in estimating the moment-of-inertia when the cross-section is variable. To estimate the influence of the voids formed by the plastic inserts on the deflection of prestressed concrete slabs, bending tests of two life-size reinforced concrete slabs were performed. The bending results obtained during the experiment were compared with the results obtained from the numerical model and analytical calculations.

Keywords: bubble slab; deflection; finite element method; inertia moment; numerical model; prestressed concrete slab; voided slab.