Proton-gated anion transport governs macropinosome shrinkage

Nat Cell Biol. 2022 Jun;24(6):885-895. doi: 10.1038/s41556-022-00912-0. Epub 2022 May 19.

Abstract

Intracellular organelles change their size during trafficking and maturation. This requires the transport of ions and water across their membranes. Macropinocytosis, a ubiquitous form of endocytosis of particular importance for immune and cancer cells, generates large vacuoles that can be followed optically. Shrinkage of macrophage macropinosomes depends on TPC-mediated Na+ efflux and Cl- exit through unknown channels. Relieving osmotic pressure facilitates vesicle budding, positioning osmotic shrinkage upstream of vesicular sorting and trafficking. Here we identify the missing macrophage Cl- channel as the proton-activated Cl- channel ASOR/TMEM206. ASOR activation requires Na+-mediated depolarization and luminal acidification by redundant transporters including H+-ATPases and CLC 2Cl-/H+ exchangers. As corroborated by mathematical modelling, feedback loops requiring the steep voltage and pH dependencies of ASOR and CLCs render vacuole resolution resilient towards transporter copy numbers. TMEM206 disruption increased albumin-dependent survival of cancer cells. Our work suggests a function for the voltage and pH dependence of ASOR and CLCs, provides a comprehensive model for ion-transport-dependent vacuole maturation and reveals biological roles of ASOR.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anions / metabolism
  • Chloride Channels* / metabolism
  • Hydrogen-Ion Concentration
  • Ion Transport
  • Protons*

Substances

  • Anions
  • Chloride Channels
  • Protons