Programmable heating and quenching for efficient thermochemical synthesis

Nature. 2022 May;605(7910):470-476. doi: 10.1038/s41586-022-04568-6. Epub 2022 May 18.

Abstract

Conventional thermochemical syntheses by continuous heating under near-equilibrium conditions face critical challenges in improving the synthesis rate, selectivity, catalyst stability and energy efficiency, owing to the lack of temporal control over the reaction temperature and time, and thus the reaction pathways1-3. As an alternative, we present a non-equilibrium, continuous synthesis technique that uses pulsed heating and quenching (for example, 0.02 s on, 1.08 s off) using a programmable electric current to rapidly switch the reaction between high (for example, up to 2,400 K) and low temperatures. The rapid quenching ensures high selectivity and good catalyst stability, as well as lowers the average temperature to reduce the energy cost. Using CH4 pyrolysis as a model reaction, our programmable heating and quenching technique leads to high selectivity to value-added C2 products (>75% versus <35% by the conventional non-catalytic method and versus <60% by most conventional methods using optimized catalysts). Our technique can be extended to a range of thermochemical reactions, such as NH3 synthesis, for which we achieve a stable and high synthesis rate of about 6,000 μmol gFe-1 h-1 at ambient pressure for >100 h using a non-optimized catalyst. This study establishes a new model towards highly efficient non-equilibrium thermochemical synthesis.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't