SPRISS: approximating frequent k-mers by sampling reads, and applications

Bioinformatics. 2022 Jun 27;38(13):3343-3350. doi: 10.1093/bioinformatics/btac180.

Abstract

Motivation: The extraction of k-mers is a fundamental component in many complex analyses of large next-generation sequencing datasets, including reads classification in genomics and the characterization of RNA-seq datasets. The extraction of all k-mers and their frequencies is extremely demanding in terms of running time and memory, owing to the size of the data and to the exponential number of k-mers to be considered. However, in several applications, only frequent k-mers, which are k-mers appearing in a relatively high proportion of the data, are required by the analysis.

Results: In this work, we present SPRISS, a new efficient algorithm to approximate frequent k-mers and their frequencies in next-generation sequencing data. SPRISS uses a simple yet powerful reads sampling scheme, which allows to extract a representative subset of the dataset that can be used, in combination with any k-mer counting algorithm, to perform downstream analyses in a fraction of the time required by the analysis of the whole data, while obtaining comparable answers. Our extensive experimental evaluation demonstrates the efficiency and accuracy of SPRISS in approximating frequent k-mers, and shows that it can be used in various scenarios, such as the comparison of metagenomic datasets, the identification of discriminative k-mers, and SNP (single nucleotide polymorphism) genotyping, to extract insights in a fraction of the time required by the analysis of the whole dataset.

Availability and implementation: SPRISS [a preliminary version (Santoro et al., 2021) of this work was presented at RECOMB 2021] is available at https://github.com/VandinLab/SPRISS.

Supplementary information: Supplementary data are available at Bioinformatics online.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Genomics
  • High-Throughput Nucleotide Sequencing*
  • Sequence Analysis, DNA
  • Software*