Determining nanorod dimensions in dispersion with size anisotropy nanoparticle tracking analysis

Phys Chem Chem Phys. 2022 Jun 1;24(21):13040-13048. doi: 10.1039/d2cp00432a.

Abstract

Control over nanorod dimensions is critical to their application, requiring fast, robust characterisation of their volume and aspect ratio whilst in their working medium. Here, we present an extension of Nanoparticle Tracking Analysis which determines the aspect ratio of nanoparticles from the polarisation state of scattered light in addition to a hydrodynamic diameter from Brownian motion. These data, in principle, permit the determination of nanorod dimensions of any composition using Nanoparticle Tracking Analysis. The results are compared with transmission electron microscopy and show that this technique can additionally determine the aggregation state of the nanorod dispersion if single nanorod dimensions are determined with a complementary technique. We also show it is possible to differentiate nanoparticles of similar hydrodynamic diameter by their depolarised scattering. Finally, we assess the ability of the technique to output nanorod dimensions and suggest ways to further improve the approach. This technique will enable rapid characterisation of nanorods in suspension, which are important tools for nanotechnology.