A Thermally Activated Delayed Fluorescence Green OLED with 4500 h Lifetime and 20% External Quantum Efficiency by Optimizing the Emission Zone using a Single-Emission Spectrum Technique

Adv Mater. 2022 Jul;34(29):e2201409. doi: 10.1002/adma.202201409. Epub 2022 Jun 12.

Abstract

Device optimization of light-emitting diodes (LEDs) targets the most efficient conversion of electrically injected charges into emitted light. The emission zone in an LED is where charges recombine and light is emitted from. It is believed that the emission zone is strongly linked to device efficiency and lifetime. However, the emission zone size is below the optical diffraction limit, so it is difficult to measure. An accessible method based on a single emission spectrum that enables emission zone measurements with sub-second time resolution is shown. A procedure is introduced to study and control the emission zone of an LED system and correlate it with device performance. A thermally activated delayed fluorescence organic LED emission zone is experimentally measured over all luminescing current densities, while varying the device structure and while ageing. The emission zone is shown to be finely controlled by emitter doping because electron transport via the emitter is the charge-transport bottleneck of the system. Suspected quenching/degradation mechanisms are linked with the emission zone changes, device structure variation, and ageing. Using these findings, a device with an ultralong 4500 h T95 lifetime at 1000 cd m-2 with 20% external quantum efficiency is shown.

Keywords: degradation; device stability; emission zone; microcavities; organic light-emitting diode charge dynamics; organic light-emitting diodes; thermally activated delayed fluorescence.