How Fluorine Introduction Solves the Spinel Transition, a Fundamental Problem of Mn-Based Positive Electrodes

ACS Appl Mater Interfaces. 2022 Jun 1;14(21):24321-24331. doi: 10.1021/acsami.2c02868. Epub 2022 May 17.

Abstract

In pursuit of high-capacity Mn-based oxides as positive electrode materials for lithium-ion batteries, the changes in the charge-discharge curve due to the spinel transition still stand in the way of the cycling stability. We found in this study that Li1.12Mn0.74O1.60F0.40 (LMOF05) positive electrodes with a loose-crystalline rock salt structure (LCRS), in which F is placed near Mn, show a stable and high capacity (300 mA h g-1, 952 W h kg-1) with little change in the charge-discharge curve. We demonstrated by F K-edge soft X-ray absorption spectroscopy and X-ray diffraction (XRD) that a part of F in the LCRS positive electrode forms F-Mn bonds. Operando XRD/X-ray absorption fine structure measurements revealed the lattice size and Mn surrounding environment during charge/discharge of F-containing LCRS positive electrodes (LMOF05), LCRS-LiMnO2 (LMO), and a spinel-like Li1.1Al0.1Mn1.8O4 positive electrode (SPINEL). Micro- and macroscopic structural changes indicate how the introduction of F suppresses the local spinel transition in Mn-based positive electrodes. These findings should be an effective tool for applying Co-free positive electrode materials for lithium-ion batteries.

Keywords: lithium manganese oxide; lithium-ion battery; operando XRD−XAFS; positive electrode; spinel.