Bacillus subtilis HG-15, a Halotolerant Rhizoplane Bacterium, Promotes Growth and Salinity Tolerance in Wheat (Triticum aestivum)

Biomed Res Int. 2022 May 7:2022:9506227. doi: 10.1155/2022/9506227. eCollection 2022.

Abstract

Certain plant growth-promoting bacteria (PGPB) reduce salt stress damage in plants. Bacillus subtilis HG-15 is a halotolerant bacterium (able to withstand NaCl concentrations as high as 30%) isolated from the wheat rhizoplane in the Yellow River delta. A qualitative and quantitative investigation of the plant growth-promoting characteristics of this strain confirmed nitrogen fixation, potassium dissolution, ammonia, plant hormone, ACC deaminase, and proline production abilities. B. subtilis HG-15 colonization of wheat roots, stems, and leaves was examined via scanning electron microscopy, rep-PCR, and double antibiotic screening. After inoculation with the B. subtilis HG-15 strain, the pH (1.08-2.69%), electrical conductivity (3.17-11.48%), and Na+ (12.98-15.55%) concentrations of rhizosphere soil significantly decreased (p < 0.05). Under no-salt stress (0.15% NaCl), low-salt stress (0.25% NaCl), and high-salt stress (0.35% NaCl) conditions, this strain also significantly increased (p < 0.05) the dry weight (17.76%, 24.46%, and 9.31%), fresh weight (12.80%, 20.48%, and 7.43%), plant height (7.79%, 5.86%, and 13.13%), and root length (10.28%, 17.87%, and 48.95%). Our results indicated that B. subtilis HG-15 can effectively improve the growth of wheat and elicit induced systemic tolerance in these plants, thus showing its potential as a microbial inoculant that can protect wheat under salt stress conditions.

MeSH terms

  • Bacillus subtilis / genetics
  • Plant Roots / microbiology
  • Salinity
  • Salt Tolerance* / genetics
  • Sodium Chloride / pharmacology
  • Triticum* / genetics

Substances

  • Sodium Chloride