Synthesis of Guanidinium Functionalized Polycarbodiimides and Their Antibacterial Activities

ACS Macro Lett. 2012 Mar 20;1(3):370-374. doi: 10.1021/mz200116k. Epub 2012 Feb 21.

Abstract

A family of guanidinium-side-chain functionalized polycarbodiimides has been synthesized by allowing an azido guanidinium salt to react with alkyne polycarbodiimides via the copper catalyzed [3 + 2] cycloaddition (Click) reaction. Poly-2(a-d) are cationic/amphiphilic polymers in which the global hydrophilic/hydrophobic balance has been tailored by local alteration of the length of alkyl side chain in the repeat unit of polymers prior to polymerization. The shorter alkyl chains yield water-soluble polymers, Poly-2c, -2d, and -2e. Antibacterial activities of these cationic polycarbodiimides have been investigated for Gram-positive and Gram-negative bacteria that include Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Acinetobacter baumannii. It was observed that the influence of hydrophobic-hydrophilic balance per repeat unit of these polymers have profound effects for both antimicrobial and hemolytic activities. In addition, these polycarbodiimide-guanidinium-triazole conjugates offered moderate to significant antibacterial activity and rapid interaction with red blood cells causing blood precipitation without significant hemolysis in case of Poly-2(b-e). This latter property has the potential to be exploited in the polymer coatings or wound protection.