Thermopower of Molecular Junction in Harsh Thermal Environments

Nano Lett. 2022 May 25;22(10):3953-3960. doi: 10.1021/acs.nanolett.2c00422. Epub 2022 May 16.

Abstract

Molecular junctions can be miniaturized devices for heat-to-electricity conversion application, yet these operate only in mild thermal environments (less than 323 K) because thiol, the most widely used anchor moiety for chemisorption of active molecules onto surface of electrode, easily undergoes thermal degradation. N-Heterocyclic carbene (NHC) can be an alternative to traditional thiol anchor for producing ultrastable thermoelectric molecular junctions. Our experiments showed that the NHC-based molecular junctions withstood remarkably high temperatures up to 573 K, exhibiting consistent Seebeck effect and thermovoltage up to approximately |1900 μV|. Our work advances our understanding of molecule-electrode contact in the Seebeck effect, providing a roadmap for constructing robust and efficient organic thermoelectric devices.

Keywords: Seebeck effect; harsh thermal environments; molecular junction; self-assembled monolayer (SAM); temperature; thermoelectrics.