Halogenation and Nucleophilic Quenching: Two Routes to E-X Bond Formation in Cobalt Triple-Decker Complexes (E=As, P; X=F, Cl, Br, I)

Chemistry. 2022 Aug 1;28(43):e202201026. doi: 10.1002/chem.202201026. Epub 2022 Jun 14.

Abstract

The oxidation of [(Cp'''Co)2 (μ,η2 : η2 -E2 )2 ] (E=As (1), P (2); Cp'''=1,2,4-tri(tert-butyl)cyclopentadienyl) with halogens or halogen sources (I2 , PBr5 , PCl5 ) was investigated. For the arsenic derivative, the ionic compounds [(Cp'''Co)2 (μ,η4 : η4 -As4 X)][Y] (X=I, Y=[As6 I8 ]0.5 (3 a), Y=[Co2 Cl6-n In ]0.5 (n=0, 2, 4; 3 b); X=Br, Y=[Co2 Br6 ]0.5 (4); X=Cl, Y=[Co2 Cl6 ]0.5 (5)) were isolated. The oxidation of the phosphorus analogue 2 with bromine and chlorine sources yielded the ionic complexes [(Cp'''Co)2 (μ-PBr2 )2 (μ-Br)][Co2 Br6 ]0.5 (6 a), [(Cp'''Co)2 (μ-PCl2 )2 (μ-Cl)][Co2 Cl6 ]0.5 (6 b) and the neutral species [(Cp'''Co)2 (μ-PCl2 )(μ-PCl)(μ,η1 : η1 -P2 Cl3 ] (7), respectively. As an alternative approach, quenching of the dications [(Cp'''Co)2 (μ,η4 : η4 -E4 )][TEF]2 (TEF=[Al{OC(CF3 )3 }4 ]- , E=As (8), P (9)) with KI yielded [(Cp'''Co)2 (μ,η4 : η4 -As4 I)][I] (10), representing the homologue of 3, and the neutral complex [(Cp'''Co)(Cp'''CoI2 )(μ,η4 : η1 -P4 )] (11), respectively. The use of [(CH3 )4 N]F instead of KI leads to the formation of [(Cp'''Co)2 (μ-PF2 )(μ,η2 : η1 : η1 -P3 F2 )] (12) and 2, thereby revealing synthetic access to polyphosphorus compounds bearing P-F groups and avoiding the use of very strong fluorinating reagents, such as XeF2 , that are difficult to control.

Keywords: arsenic; fluorine; halogenation; nucleophilic quenching; phosphorus.