Real-time PDT Dose Dosimetry for Pleural Photodynamic Therapy

Proc SPIE Int Soc Opt Eng. 2022 Jan-Feb:11940:1194002. doi: 10.1117/12.2612188. Epub 2022 Mar 4.

Abstract

PDT dose is the product of the photosensitizer concentration and the light fluence in the target tissue. For improved dosimetry during plural photodynamic therapy (PDT), an eight-channel PDT dose dosimeter was developed to measure both the light fluence and the photosensitizer concentration simultaneously from eight different sites in the pleural cavity during PDT. An isotropic detector with bifurcated fibers was used for each channel to ensure detected light was split equally to the photodiode and spectrometer. The light fluence rate distribution is monitored using an IR navigation system. The navigation system allows 2D light fluence mapping throughout the whole pleural cavity rather than just the selected points. The fluorescence signal is normalized by the light fluence measured at treatment wavelength. We have shown that the absolute photosensitizer concentration can be obtained by applying optical properties correction and linear spectral fitting to the measured fluorescence data. The detection limit and the optical property correction factor of each channel were determined and validated using tissue-simulating phantoms with known varying concentration of Photofrin. Tissue optical properties are determined using an absorption spectroscopy probe immediately before PDT at the same sites. The combination of 8-channel PDT dosimeter system and IR navigation system, which can calculate light fluence rate in the pleural cavity in real-time, providing a mean to determine the distribution of PDT dose on the entire pleural cavity to investigate the heterogeneity of PDT dose on the pleural cavity.

Keywords: IR navigation system; PDT dose; Photofrin; Pleural PDT; photodynamic therapy.