CYP116B5hd, a self-sufficient P450 cytochrome: A dataset of its electronic and geometrical properties

Data Brief. 2022 Apr 25:42:108195. doi: 10.1016/j.dib.2022.108195. eCollection 2022 Jun.

Abstract

This paper documents the dataset obtained from the Electron Paramagnetic Resonance (EPR) study of the electronic properties of a self-sufficient cytochrome P450, CYP116B5hd, which possesses an interesting catalytic activity for synthetic purposes. In fact, when isolated, its heme domain can act as a peroxygenase on different substrates of biotechnological interest. Raw data shown in Famulari et al. (2022) and supplementary data in raw and processed forms (figures) are documented and available in this paper. Additionally, simulations of the experimental data together with simulation scripts based for EasySpin, a widespread MATLAB toolbox for EPR spectral simulations, are provided. The procedure for g-value analysis based on a crystal-field theory is also detailed here, offering an interesting tool for comparison of FeIII-heme P450 systems. Due to the catalytic interest of the protein, which has been recently discovered, and the correlation that has been reported between g-values and peroxidase function, both, CW-EPR and HYSCORE spectra and data set of the model CYPBM3hd are also provided. Finally, the materials and methods for enzyme production and purification, sample preparation and experimental and spectroscopic procedures a together with instrumental details are described in detail. The data files and simulation scripts can be found in: https://doi.org/10.5281/zenodo.6418626.

Keywords: Cytochromes P450; EPR; EPR simulations; Ferric hemeprotein; HYSCORE; Spin density.