Type I Photoinitiator-Functionalized Block Copolymer Nanoparticles Prepared by RAFT-Mediated Polymerization-Induced Self-Assembly

ACS Macro Lett. 2021 Feb 16;10(2):297-306. doi: 10.1021/acsmacrolett.1c00014. Epub 2021 Feb 3.

Abstract

Type I photoinitiators have been widely used in UV-vis curing technology for the fabrication of functional polymer materials such as coatings, inks, and adhesives. To overcome the drawbacks of using small molecular type I photoinitiators and expand the potential applications of UV-vis curing technology, attaching type I photoinitiators onto the surface of polymer colloids is an attractive strategy. Here we report a robust strategy for the efficient preparation of type I photoinitiator-functionalized block copolymer nanoparticles with various morphologies via aqueous reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization-induced self-assembly (PISA), in which the photoinitiating ability of the type I photoinitiator end group provides a landscape for further functionalization. These block copolymer nanoparticles could also be used as heterogeneous photoinitiators to generate hydrogels with nanoparticles embedded inside. Significantly, the properties and functionalities of these hydrogels could be further controlled by using different block copolymer nanoparticles. This study provides a robust strategy toward the preparation of type I photoinitiator-functionalized block copolymer nanoparticles with the capacity to be modified with varying functionalities.