Microbiome systems biology advancements for natural well-being

Sci Total Environ. 2022 Sep 10;838(Pt 2):155915. doi: 10.1016/j.scitotenv.2022.155915. Epub 2022 May 11.

Abstract

Throughout the years all data from epidemiological, physiological and omics have suggested that the microbial communities play a considerable role in modulating human health. The population of microorganisms residing in the human intestine collectively known as microbiota presents a genetic repertoire that is higher in magnitude than the human genome. They play an essential role in host immunity and neuronal signaling. Rapid enhancement of sequence based screening and development of humanized gnotobiotic model has sparked a great deal of interest among scientists to probe the dynamic interactions of the commensal bacteria. This review focuses on systemic analysis of the gut microbiome to decipher the complexity of the host-microbe intercommunication and gives a special emphasis on the evolution of targeted precision medicine through microbiome engineering. In addition, we have also provided a comprehensive description of how interconnection between metabolism and biochemical reactions in a specific organism can be obtained from a metabolic network or a flux balance analysis and combining multiple datasets helps in the identification of a particular metabolite. The review highlights how genetic modification of the critical components and programming the resident microflora can be employed for targeted precision medicine. Inspite of the ongoing debate on the utility of gut microbiome we have explored on the probable new therapeutic avenues like FMT (Fecal microbiota transplant) can be utilized. This review also recapitulates integrating human-relevant 3D cellular models coupled with computational models and the metadata obtained from interventional and epidemiological studies may decipher the complex interactome of diet-microbiota-disease pathophysiology. In addition, it will also open new avenues for the development of therapeutics derived from microbiome or implementation of personalized nutrition. In addition, the identification of biomarkers can also help towards the development of new diagnostic tools and eventually will lead to strategic management of the disease. Inspite of the ongoing debate on the utility of the gut microbiome we have explored how probable new therapeutic avenues like FMT (Fecal microbiota transplant) can be utilized. This review also summarises integrating human-relevant 3D cellular models coupled with computational models and the metadata obtained from interventional and epidemiological studies may decipher the complex interactome of diet- microbiota-disease pathophysiology. In addition, it will also open new avenues for the development of therapeutics derived from the microbiome or implementation of personalized nutrition. In addition, the identification of biomarkers can also help towards the development of new diagnostic tools and eventually will lead to strategic management of disease.

Keywords: Dysbiosis; Metabonome; Microbiome; Omics; Precision medicine; Systems biology.

Publication types

  • Review

MeSH terms

  • Bacteria
  • Gastrointestinal Microbiome*
  • Humans
  • Intestines
  • Microbiota* / physiology
  • Systems Biology