Interfaces Based on Laser-Structured Arrays of Carbon Nanotubes with Albumin for Electrical Stimulation of Heart Cell Growth

Polymers (Basel). 2022 May 2;14(9):1866. doi: 10.3390/polym14091866.

Abstract

Successful formation of electronic interfaces between living cells and electronic components requires both good cell viability and performance level. This paper presents a technology for the formation of nanostructured arrays of multi-walled carbon nanotubes (MWCNT) in biopolymer (albumin) layer for higher biocompatibility. The layer of liquid albumin dispersion was sprayed on synthesized MWCNT arrays by deposition system. These nanostructures were engineered using the nanosecond pulsed laser radiation mapping in the near-IR spectral range (λ = 1064 nm). It was determined that the energy density of 0.015 J/cm2 provided a sufficient structuring of MWCNT. The structuring effect occurred during the formation of C-C bonds simultaneously with the formation of a cellular structure of nanotubes in the albumin matrix. It led to a decrease in the nanotube defectiveness, which was observed during the Raman spectroscopy. In addition, laser structuring led to a more than twofold increase in the electrical conductivity of MWCNT arrays with albumin (215.8 ± 10 S/m). Successful electric stimulation of cells on the interfaces with the system based on a culture plate was performed, resulting in the enhanced cell proliferation. Overall, the MWCNT laser-structured arrays with biopolymers might be a promising material for extended biomedical applications.

Keywords: Raman spectroscopy; albumin; arrays of carbon nanotubes; bioelectronics; electrical stimulation; growth of cells; heart cells; laser structuring; scanning electron microscopy.

Grants and funding

This work was financed by the Ministry of Science and Higher Education of the Russian Federation within the framework of state support for the creation and development of World-Class Research Centers “Digital biodesign and personalized healthcare” No. 075-15-2020-926.