Novel Dextran Coated Cerium Doped Hydroxyapatite Thin Films

Polymers (Basel). 2022 Apr 29;14(9):1826. doi: 10.3390/polym14091826.

Abstract

Dextran coated cerium doped hydroxyapatite (Ca10-xCex(PO4)6(OH)2), with x = 0.05 (5CeHAp-D) and x = 0.1 (10CeHAp-D) were deposited on Si substrates by radio frequency magnetron sputtering technique for the first time. The morphology, composition, and structure of the resulting coatings were examined by scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), atomic force microscopy (AFM), metallographic microscopy (MM), Fourier transform infrared spectroscopy (FTIR), and glow discharge optical emission spectroscopy (GDOES), respectively. The obtained information on the surface morphologies, composition and structure was discussed. The surface morphologies of the CeHAp-D composite thin films are smooth with no granular structures. The constituent elements of the CeHAp-D target were identified. The results of the FTIR measurements highlighted the presence of peaks related to the presence of ν1, ν3, and ν4 vibration modes of (PO43-) groups from the hydroxyapatite (HAp) structure, together with those specific to the dextran structure. The biocompatibility assessment of 5CeHAp-D and 10CeHAp-D composite coatings was also discussed. The human cells maintained their specific elongated morphology after 24 h of incubation, which confirmed that the behavior of gingival fibroblasts and their proliferative capacity were not disturbed in the presence of 5CeHAp-D and 10CeHAp-D composite coatings. The 5CeHAp-D and 10CeHAp-D coatings' surfaces were harmless to the human gingival fibroblasts, proving good biocompatibility.

Keywords: biocompatibility; chemical composition; composite coatings; dextran coated cerium doped hydroxyapatite; human gingival fibroblast cells; surface morphology.