Changing the Paradigm-Controlling Polymer Morphology during 3D Printing Defines Properties

Polymers (Basel). 2022 Apr 19;14(9):1638. doi: 10.3390/polym14091638.

Abstract

Direct digital manufacturing consists of a set of techniques that enable products to be fabricated directly from their digital definition, without the use of complex tooling or moulds. This manufacturing approach streamlines prototyping and small-scale production, as well as the mass customization of parts with complex designs immediately fixed before fabrication. With broad applicability, there are clearly opportunities in the field of medical devices for its use. However, many of the developments of direct digital manufacturing focus on simply specifying the shape or the form of the product, and this limited scope throws away many of the particular advantages of direct digital manufacturing. This work is focused on remedying this situation so that the digital specification of the fabricated product includes the properties as well as the form of the product. We use in situ time-resolving small-angle X-ray scattering measurements performed at the ALBA Synchrotron Light Source in Barcelona to evaluate the control that can be exerted on the morphology of a semi-crystalline polymer during extruder-based 3D printing. We use this as a methodology for printing the patterns of the morphology of the polymer to realise the patterns of properties of the polymeric material, specifically the modulus of the polymer. We give an example of products produced in this manner that contain spatial variation in their properties.

Keywords: 3D printing; crystal orientation; mechanical properties; polymer morphology; polymer texture printing.