Linker Functionalization Strategy for Water Adsorption in Metal-Organic Frameworks

Molecules. 2022 Apr 19;27(9):2614. doi: 10.3390/molecules27092614.

Abstract

Water adsorption in metal-organic frameworks has gained a lot of scientific attention recently due to the potential to be used in adsorption-based water capture. Functionalization of their organic linkers can tune water adsorption properties by increasing the hydrophilicity, thus altering the shape of the water adsorption isotherms and the overall water uptake. In this work, a large set of functional groups is screened for their interaction with water using ab initio calculations. The functional groups with the highest water affinities form two hydrogen bonds with the water molecule, acting as H-bond donor and H-bond acceptor simultaneously. Notably, the highest binding energy was calculated to be -12.7 Kcal/mol for the -OSO3H group at the RI-MP2/def2-TZVPP-level of theory, which is three times larger than the reference value. Subsequently, the effect of the functionalization strategy on the water uptake is examined on a selected set of functionalized MOF-74-III by performing Monte Carlo simulations. It was found that the specific groups can increase the hydrophilicity of the MOF and enhance the water uptake with respect to the parent MOF-74-III for relative humidity (RH) values up to 30%. The saturation water uptake exceeded 800 cm3/cm3 for all candidates, classifying them among the top performing materials for water harvesting.

Keywords: Monte Carlo; ab initio; functionalization; metal–organic frameworks; water; water harvesting.

MeSH terms

  • Adsorption
  • Metal-Organic Frameworks* / chemistry
  • Monte Carlo Method
  • Water / chemistry

Substances

  • Metal-Organic Frameworks
  • Water