Structure-Activity Relationship of Benzofuran Derivatives with Potential Anticancer Activity

Cancers (Basel). 2022 Apr 28;14(9):2196. doi: 10.3390/cancers14092196.

Abstract

Benzofuran is a heterocyclic compound found naturally in plants and it can also be obtained through synthetic reactions. Multiple physicochemical characteristics and versatile features distinguish benzofuran, and its chemical structure is composed of fused benzene and furan rings. Benzofuran derivatives are essential compounds that hold vital biological activities to design novel therapies with enhanced efficacy compared to conventional treatments. Therefore, medicinal chemists used its core to synthesize new derivatives that can be applied to a variety of disorders. Benzofuran exhibited potential effectiveness in chronic diseases such as hypertension, neurodegenerative and oxidative conditions, and dyslipidemia. In acute infections, benzofuran revealed anti-infective properties against microorganisms like viruses, bacteria, and parasites. In recent years, the complex nature and the number of acquired or resistant cancer cases have been largely increasing. Benzofuran derivatives revealed potential anticancer activity with lower incidence or severity of adverse events normally encountered during chemotherapeutic treatments. This review discusses the structure-activity relationship (SAR) of several benzofuran derivatives in order to elucidate the possible substitution alternatives and structural requirements for a highly potent and selective anticancer activity.

Keywords: SAR; anticancer activity; anticancer potency; anticancer selectivity; benzofuran; hybrid benzofurans.

Publication types

  • Review

Grants and funding

This research received no external funding.