Facile Assembly of InVO4/TiO2 Heterojunction for Enhanced Photo-Oxidation of Benzyl Alcohol

Nanomaterials (Basel). 2022 May 3;12(9):1544. doi: 10.3390/nano12091544.

Abstract

In this work, an InVO4/TiO2 heterojunction composite catalyst was successfully synthesized through a facile hydrothermal method. The structural and optical characteristics of InVO4/TiO2 heterojunction composites are investigated using a variety of techniques, including powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and spectroscopy techniques. The addition of InVO4 to TiO2 considerably enhanced the photocatalytic performance in selective photo-oxidation of benzyl alcohol (BA). The 10 wt% InVO4/TiO2 composite photocatalyst provided a decent 100% BA conversion with over 99% selectivity for benzaldehyde, and exhibited a maximum conversion rate of 3.03 mmol g-1 h-1, which is substantially higher than bare InVO4 and TiO2. The excellent catalytic activity of the InVO4/TiO2 photocatalyst is associated with the successful assembly of heterostructures, which promotes the charge separation and transfer between InVO4 and TiO2.

Keywords: InVO4/TiO2 heterojunction; benzyl alcohol; oxidation; photocatalysis.