Flexible and Transparent Electrode Based on Ag-Nanowire Embedded Colorless Poly(amide-imide)

Nanomaterials (Basel). 2022 Apr 25;12(9):1457. doi: 10.3390/nano12091457.

Abstract

Graphene oxide-cysteamine-silver nanoparticle (GCA)/silver nanowire (AgNW)/GCA/colorless poly(amide-imide) (cPAI) structures based on cPAI substrates with polyimide and polyamide syntheses were fabricated to study their characteristics. A layer of electrodes was constructed using a sandwich structure-such as GCA/AgNW/GCA-with cPAI used as a substrate to increase the heat resistance and improve their mechanical properties. Furthermore, to overcome the disadvantages of AgNWs-such as their high surface roughness and weak adhesion between the substrate and electrode layers-electrodes with embedded structures were fabricated using a peel-off process. Through bending, tapping, and durability tests, it was confirmed that these multilayer electrodes exhibited better mechanical durability than conventional AgNW electrodes. Resistive random-access memory based on GCA/AgNW/GCA/cPAI electrodes was fabricated, and its applicability to nonvolatile memory was confirmed. The memory device had an ON/OFF current ratio of ~104@0.5 V, exhibiting write-once-read-many time characteristics, maintaining these memory characteristics for up to 300 sweep cycles. These findings suggest that GCA/AgNW/GCA/cPAI electrodes could be used as flexible and transparent electrodes for next-generation flexible nonvolatile memories.

Keywords: Ag nanowire; GO-cysteamine-Ag nanoparticle (GCA); colorless poly(amide-imide); resistive switching memory; transparent and flexible electrode.