Two Novel Antihypertensive Peptides Identified in Millet Bran Glutelin-2 Hydrolysates: Purification, In Silico Characterization, Molecular Docking with ACE and Stability in Various Food Processing Conditions

Foods. 2022 May 6;11(9):1355. doi: 10.3390/foods11091355.

Abstract

The addition of food-derived antihypertensive peptides to the diet is considered a reasonable antihypertension strategy. However, data about the stability of antihypertensive peptides in different food processing conditions are limited. In this study, through Sephadex G-15 gel chromatography and RP-HPLC separation, UPLC-ESI-MS/MS analysis and in silico screening, two novel ACE-inhibitory peptides, Pro-Leu-Leu-Lys (IC50: 549.87 μmol/L) and Pro-Pro-Met-Trp-Pro-Phe-Val (IC50: 364.62 μmol/L), were identified in millet bran glutelin-2 hydrolysates. The inhibition of angiotensin-I converting enzyme and the potential safety of PLLK and PPMWPFV were studied using molecular docking and in silico prediction, respectively. The results demonstrated that PLLK and PPMWPFV could non-competitively bind to one and seven binding sites of ACE through short hydrogen bonds, respectively. Both PLLK and PPMWPFV were resistant to different pH values (2.0-10.0), pasteurization conditions, addition of Na+, Mg2+ or K+ and simulated gastrointestinal digestion. However, PLLK and PPMWPFV were unstable upon heat treatment at 100 °C for more than 20 min or treatment with Fe3+ or Zn2+. In fact, treatment with Fe3+ or Zn2+ induced the formation of PLLK-iron or PLLK-zinc chelates and reduced the ACE-inhibitory activity of PLLK. These results indicate that peptides derived from millet bran could be added to foods as antihypertension agents.

Keywords: angiotensin-I converting enzyme inhibitor; millet bran glutelin-2 hydrolysates; molecular docking; security prediction in silico; stability.