Schwann Cells Promote Myogenic Differentiation of Myoblasts and Adipogenic Mesenchymal Stromal Cells on Poly-ɛ-Caprolactone-Collagen I-Nanofibers

Cells. 2022 Apr 24;11(9):1436. doi: 10.3390/cells11091436.

Abstract

For the purpose of skeletal muscle tissue engineering, different cell types have been investigated regarding their myogenic differentiation potential, including co-cultured myoblasts and adipogenic mesenchymal stromal cells (Mb/ADSC). As neural cells enhance synaptic junction formation, the aim of this study was to co-culture Schwann cells (SCs) with Mb/ADSC on biocompatible electrospun aligned poly-ε-polycaprolacton (PCL)-collagen I-nanofibers. It was hypothesized that SCs, as part of the peripheral nervous system, promote the myogenic differentiation of Mb/ADSC co-cultures. Mb/ADSC were compared to Mb/ADSC/SC regarding their capacity for myogenic differentiation via immunofluorescent staining and gene expression of myogenic markers. Mb/ADSC/SC showed more myotubes after 28 days of differentiation (p ≤ 0.05). After 28 days of differentiation on electrospun aligned PCL-collagen I-nanofibers, gene expression of myosin heavy chains (MYH2) and myogenin (MYOG) was upregulated in Mb/ADSC/SC compared to Mb/ADSC (p ≤ 0.01 and p ≤ 0.05, respectively). Immunofluorescent staining for MHC showed highly aligned multinucleated cells as possible myotube formation in Mb/ADSC/SC. In conclusion, SCs promote myogenic differentiation of Mb/ADSC. The co-culture of primary Mb/ADSC/SC on PCL-collagen I-nanofibers serves as a physiological model for skeletal muscle tissue engineering, applicable to future clinical applications.

Keywords: ADSC; Schwann cells; mesenchymal stem cells; myoblasts; myogenic differentiation; nanofibers.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Caproates
  • Collagen / metabolism
  • Collagen Type I / metabolism
  • Lactones
  • Mesenchymal Stem Cells* / metabolism
  • Myoblasts / metabolism
  • Nanofibers*
  • Schwann Cells

Substances

  • Caproates
  • Collagen Type I
  • Lactones
  • caprolactone
  • Collagen