Association between averaged meteorological factors and tuberculosis risk: A systematic review and meta-analysis

Environ Res. 2022 Sep;212(Pt D):113279. doi: 10.1016/j.envres.2022.113279. Epub 2022 May 11.

Abstract

Inconsistencies were discovered in the findings regarding the effects of meteorological factors on tuberculosis (TB). This study conducted a systematic review of published studies on the relationship between TB and meteorological factors and used a meta-analysis to investigate the pooled effects in order to provide evidence for future research and policymakers. The literature search was completed by August 3rd, 2021, using three databases: PubMed, Web of Science and Embase. Relative risks (RRs) in included studies were extracted and all effect estimates were combined together using meta-analysis. Subgroup analyses were carried out based on the resolution of exposure time, regional climate, and national income level. A total of eight studies were included after screening for inclusion and exclusion criteria. Our results show that TB risk was positively correlated with precipitation (RR = 1.32, 95% CI: 1.14, 1.51), while temperature (RR = 1.15, 95% CI: 1.00, 1.32), humidity (RR = 1.05, 95% CI: 0.99, 1.10), air pressure (RR = 0.89, 95% CI: 0.69, 1.14) and sunshine duration (RR = 0.95, 95% CI: 0.80, 1.13) all had no statistically significant correlation. Subgroup analysis shows that quarterly measure resolution, low and middle Human Development Index (HDI) level and subtropical climate increase TB risk not only in precipitation, but also in temperature and humidity. Moreover, less heterogeneity was observed in "high and extremely high" HDI areas and subtropical areas than that in other subgroups (I2 = 0%). Precipitation, a subtropical climate, and a low HDI level are all positive influence factors to tuberculosis. Therefore, residents and public health managers should take precautionary measures ahead of time, especially in extreme weather conditions.

Keywords: Humidity; Meta-analysis; Precipitation; Temperature; Tuberculosis; Weather factors.

Publication types

  • Meta-Analysis
  • Systematic Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Climate
  • Humans
  • Humidity
  • Meteorological Concepts
  • Risk
  • Tuberculosis* / epidemiology
  • Tuberculosis* / etiology