Spectral peaking in an ultrashort-pulse fiber laser oscillator with a molecular gas cell

Opt Lett. 2022 May 15;47(10):2422-2425. doi: 10.1364/OL.458643.

Abstract

Here we report the demonstration of a spectral peaking phenomenon in a fiber laser oscillator. An HCN gas cell was inserted in an ultrashort-pulse Er-doped fiber laser with single-wall carbon nanotubes. Sech2-shaped ultrashort pulses with intense multiple sharp spectral peaks were stably generated. When the generated pulses were coupled into highly nonlinear fiber, enhanced multiple spectral peaks were generated by periodical spectral peaking in the optical fiber. The characteristics and physical mechanism of spectral peaking in the fiber laser were investigated via numerical simulations. As the magnitude of absorption was increased, the magnitude of the generated spectral peaks increased almost exponentially. It was clarified that the spectral peaks were generated through the accumulation of filtering components generated in each round trip.