Biomimetic Swallow Nest Structure: A Lightweight and High-Strength Thermal Insulation Material

ACS Nano. 2022 May 24;16(5):8116-8127. doi: 10.1021/acsnano.2c01451. Epub 2022 May 13.

Abstract

A common method for reducing carbon emissions and the load-bearing pressure of buildings, and while also achieving improved energy conservation is to prepare porous magnesium-based lightweight composites to reduce waste and environmental hazards. However, due to internal stress, the pores of traditional lightweight composites crack easily and collapse, resulting in composites that are brittle with poor water resistance. These materials cannot achieve both low density and high strength, which limits their application in advanced functional materials. Thus, learned from nature, inspired by swallow's nest, a solution has been proposed, which is a simple and fast chemical arrangement and assembly method. Using bamboo scraps as the supporting framework and methylcellulose (MC) molecular chains as the templates, 5-phase crystals are grown and arranged on the MC. These crystals are arranged on the bamboo scraps by chemical means with MC acting as a bridge. At the same time, using the high viscosity and flexibility of the vinyl acetate/ethylene (VAE) copolymer emulsion and the formation of magnesium acetate chelate from VAE and hydration products, crystals and bamboo scraps can be assembled. Through these organic-inorganic copolymers, an intercalated and integrated biomimetic swallow nest structure is formed. The biomimetic swallow nest structure composites (BSNSC) imitated the formation process of a natural swallow nest. It is a lightweight material with a thick wall, low connectivity rate, and regular shape. Its density is 0.42 g/cm3, which is still in the density class of ultralight inorganic foam materials, and its compressive strength reaches 6.5 MPa, three times that of ordinary composites. The structure has a strength-to-weight ratio 3.5 times that of ordinary composites and a thermal conductivity much lower than of other thermal insulation materials. In the future, this type of lightweight composites with high strength, high heat insulation, and low density not only functions as a good energy-saving material for buildings but also a good thermal insulation material in the aerospace field.

Keywords: 5-phase crystal; biomimetic swallow nest structure; high strength; intercalation integration; lightweight; methylcellulose; thermal insulation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomimetics*
  • Thermal Conductivity