Ag8SnS6: a new IR solar absorber material with a near optimal bandgap

RSC Adv. 2018 Nov 26;8(69):39470-39476. doi: 10.1039/c8ra08734b. eCollection 2018 Nov 23.

Abstract

We report the synthesis and photovoltaic properties of a new ternary solar absorber - Ag8SnS6 nanocrystals prepared by successive ionic layer adsorption reaction (SILAR) technique. The synthesized Ag8SnS6 nanocrystals have a bandgap E g of 1.24-1.41 eV as revealed from UV-Vis and external quantum efficiency (EQE) measurements. Its photovoltaic properties were characterized by assembling a liquid-junction Ag8SnS6 sensitized solar cell for the first time. The best cell yielded a J sc of 9.29 mA cm-2, a V oc of 0.23 V, an FF of 31.3% and a power conversion efficiency (PCE) of 0.64% under 100% incident light illumination using polysulfide electrolyte and Au counter electrode. The efficiency improved to 1.43% at a reduced light intensity of 10% sun. When the polysulfide was replaced by a cobalt electrolyte with a lower redox level, the V oc increased to 0.54 V and PCE increased to 2.29% under 0.1 sun, a respectable efficiency for a new solar material. The EQE spectrum covers the spectral range of 300-1000 nm with a maximum EQE of 77% at λ = 600 nm. The near optimal E g and the respectable photovoltaic performance suggest that Ag8SnS6 nanocrystals have potential to be an efficient IR solar absorber.