Improvement of probiotic viability through the design of novel biomaterials using coffee pulp wastes and Lactobacillus rhamnosus

Food Sci Technol Int. 2023 Sep;29(6):573-585. doi: 10.1177/10820132221100683. Epub 2022 May 12.

Abstract

The immobilization of bacteria cells has shown to be an efficient technology to improve cell viability. This study used lyophilized and pulverized coffee pulp (LPC) and LPC functionalized with theobromine at two concentrations, 3.1 w/w and 2.4 w/w named as LPF1 and LPF2, respectively, to immobilize Lactobacillus rhamnosus ATCC 53103 cells (biomaterials) and increase the viability of the cell at storage and gastrointestinal conditions. To characterize the biomaterials, SEM, Dynamic Light Scattering, TGA, , FTIR and Isoeletrc Point measurements (or zeta potential measurements) were carried out. To evaluate the effectiveness of immobilization, cell viability as a function of storage time and under simulated gastrointestinal conditions was evaluated. Regarding the characterization of the materials, the particle sizes were 21.7 to 334.4 nm and they experienced mass losses of less than 10% at 100 °C. The FTIR indicated the presence of functional groups related to caffeine, chlorogenic acid, sucrose, arabinogalactans, carbohydrates, and proteins in all biomaterials. The sorption kinetic parameters showed an adsorptive capacity between 3.0 × 109 and 8.0 × 109 CFU/g, being LPF1 the best materials to immobilize the cells, associated with LPF1 surface properties. The viability was higher for immobilized cells than for free cells, when left in storage and under simulated gastric conditions. Finally, the biomaterials could be used in the preparation of probiotic diets based on lactobacilli. To the best of our knowledge, this is the first study regarding the use of waste from coffee agribusiness to develop probiotic biocarriers which opens up possibilities for future developments.

Keywords: cell viability; gastrointestinal conditions; immobilization; probiotics.

MeSH terms

  • Kinetics
  • Lacticaseibacillus rhamnosus*
  • Lactobacillus
  • Microbial Viability
  • Probiotics*