Bicontinuous Ion-Exchange Materials through Polymerization-Induced Microphase Separation

ACS Macro Lett. 2021 Jan 19;10(1):60-64. doi: 10.1021/acsmacrolett.0c00684. Epub 2020 Dec 15.

Abstract

Polymerization-induced microphase separation has been used to prepare solid cross-linked monoliths containing bicontinuous and nanostructured polymer domains. We use this process to fabricate a monolith containing either a negatively or positively charged polyelectrolyte domain inside of the neutral styrene/divinylbenzene-derived matrix. First, the materials are made with a neutral pre-ionic polymer containing masked charged groups. The monoliths are then functionalized to a charged state by treatment with trimethylamine; small-angle X-ray scattering shows no significant morphological change in the microphase-separated structure upon postpolymerization modification. By exchanging dyes with the counterions in the material, we corroborated the continuity of the charged domains. Using ion-exchange capacity measurements, we estimate the number of accessible charges within the material based on macro-chain transfer agent molar mass and loading.