Niobium phosphotungstates: excellent solid acid catalysts for the dehydration of fructose to 5-hydroxymethylfurfural under mild conditions

RSC Adv. 2018 Sep 18;8(57):32423-32433. doi: 10.1039/c8ra05940c.

Abstract

The efficient conversion of carbohydrates to 5-hydroxymethylfurfural (5-HMF) under mild conditions represents a very attractive and promising method of producing important building blocks. In this work, niobium phosphotungstates, with Nb/P molar ratios of 0.6, 1.0, 2.0 and 4.0 (NbPW-06, NbPW-1, NbPW-2, and NbPW-4, respectively) have been prepared by a facile, one-pot, alcohol-mediated thermal process and used for the direct conversion of fructose to 5-HMF. By adding a certain amount of Nb, the surface of the catalyst became enriched in P, and this enrichment was associated with the presence of surface P-OH groups that offered Brønsted acid sites that can activate superficial hydrogen species to facilitate 5-HMF generation. Pyridine-FTIR confirmed the presence of Brønsted and Lewis acid sites, which might play important roles in the dehydration of fructose to 5-HMF. Furthermore, polar aprotic solvents were well-suited for the conversion, and higher yields of 5-HMF were obtained in polar aprotic solvents than in nonpolar solvents. A 5-HMF yield of 96.7% with complete fructose consumption was obtained over NbPW-06 in DMSO at 80 °C after 90 min. In addition, NbPW-06 could be recycled several times without a significant decrease in the catalytic activity. A catalytic mechanism for this reaction was proposed. Moreover, this catalytic system can also be utilized for the dehydration of sucrose and inulin to 5-HMF in satisfactory yields. This study establishes an important platform for the further design of Nb-containing catalysts for the production of 5-HMF from carbohydrates under mild conditions.