Optimization of DMD-based independent amplitude and phase modulation by analysis of target complex wavefront

Sci Rep. 2022 May 11;12(1):7754. doi: 10.1038/s41598-022-11443-x.

Abstract

The paper presents the results of a comprehensive study on the optimization of independent amplitude and phase wavefront manipulation which is implemented using a binary digital micromirror device. The study aims to investigate the spatial resolution and quantization achievable using this approach and its optimization based on the parameters of the target complex wave and the modulation error estimation. Based on a statistical analysis of the data, an algorithm for selecting parameters (carrier frequency of binary pattern and aperture for the first diffraction order filtering) that ensures the optimal quality of the modulated wavefront was developed. The algorithm takes into account the type of modulation, that is, amplitude, phase, or amplitude-phase, the size of the encoded distribution, and its requirements for spatial resolution and quantization. The results of the study will greatly contribute to the improvement of modulated wavefront quality in various applications with different requirements for spatial resolution and quantization.