Alkynyl and halogen co-protected (AuAg)44 nanoclusters: a comparative study on their optical absorbance, structure, and hydrogen evolution performance

Dalton Trans. 2022 May 24;51(20):7845-7850. doi: 10.1039/d2dt00634k.

Abstract

We report the synthesis, structure, and electrochemical hydrogen evolution reaction (HER) performance of two alkynyl and halogen coprotected AuAg alloy nanoclusters, namely Au24Ag20(tBuPh-CC)24Cl2 (NC 1 for short) and Au22Ag22(tBuCC)16Br3.28Cl2.72 (NC 2 for short). Single crystal X-ray structural analysis revealed that the two nanoclusters possess a rather similar core@shell@shell keplerate metal core configuration to M12@M20@M12 with the main difference in the outermost shell (Au12vs. Au10Ag2). Interestingly, such a subtle difference in the two-metal-atoms results in different optical absorbance features and drastically different HER performances. Both NCs have excellent long-term stability for the HER, but NC 1 possesses superior activity to NC 2, and density functional theory calculations disclosed that the binding energy of hydrogen to form the key *H intermediate for NC 1 is much lower and hence it adopts a more energetically feasible HER pathway.