Superior adsorption of 3D nanoporous architectures for Ni(ii) ions adsorption using polyvinyl alcohol as cross-linking agent and adsorption conveyor

RSC Adv. 2018 Feb 19;8(15):7899-7903. doi: 10.1039/c8ra00113h.

Abstract

In this study, we report a large-scale and low cost approach for the synthesis of three-dimensional (3D) polyvinyl alcohol/carbon nanotubes nanoporous architecture using self-assembly method. Polyvinyl alcohol, serving as a cross-linking agent and adsorption conveyor, could effectively interconnect carbon nanotubes sequentially and also effectively store Ni(ii) ions. An outstanding adsorption of 225.6 mg g-1 was achieved for 3D nanoporous structure, which was 18-fold more than that for carbon nanotube powders and much higher than that for other sorbents reported in literature. In addition, it was found that 3D nanoporous architectures remained intact after adsorption, which could recollect resources and avoid carbon nanotube leakage into water. Therefore, the designed 3D nanoporous architectures have a good potential application in environmental protection.