Boron-doped graphene as a metal-free catalyst for gas-phase oxidation of benzyl alcohol to benzaldehyde

RSC Adv. 2018 Mar 20;8(20):11222-11229. doi: 10.1039/c8ra00290h. eCollection 2018 Mar 16.

Abstract

Boron-doped graphene samples (BGs) with tunable boron content of 0-2.90 at% were synthesized and directly used in the gas-phase oxidation of benzyl alcohol to benzaldehyde, and showed excellent performance. XPS results indicated that the graphitic sp2 B species (BC3) is the mainly boron dopant species incorporated in the graphene lattice, which could significantly improve the content of ketone carbonyl groups (C[double bond, length as m-dash]O) on the graphene. For instance, the contents of C[double bond, length as m-dash]O jumped from 1.93 to 4.19 at% while BC3 doped into the graphene lattice was only 0.35 at%. The C[double bond, length as m-dash]O is the active site of catalytic reaction, so BG has significantly improved catalytic activity. Compared to the un-doped graphene (G), the conversion of benzyl alcohol over BGs increased 2.35 times and the selectivity of benzaldehyde increased from 77.3% to 99.2%. Aerobic-anaerobic exchange experiments revealed that the superior catalytic performance of BG was achieved only under aerobic conditions. The study of the boron-doped carbocatalyst may also provide guidance for the design of surface modified carbon-based catalysts for the selective oxidation dehydrogenation of alcohols by regulating doping elements and their types.