Hydrolysis and oxidation of protein and lipids in dry-salted grass carp (Ctenopharyngodon idella) as affected by partial substitution of NaCl with KCl and amino acids

RSC Adv. 2019 Dec 2;9(68):39545-39560. doi: 10.1039/c9ra07019b.

Abstract

To obtain healthier meat products with reduced Na content, the salt substitute containing l-histidine and l-lysine was compared with NaCl in the hydrolysis and oxidation of protein and lipids of dry-salted fish during processing. Compared with NaCl-treated fish (S-F), salt substitute treated fish (SS-F) had a lower Na content, higher moisture content and lower hardness. Sensory analysis showed that salt substitute didn't affect the acceptability of salted fish. The free fatty acids of SS-F treated fish had a slight tendency toward lipolysis at the end of processing. Additionally, the conjugated diene value, lipoxygenase activity and malondialdehyde value were lower in the ventral and dorsal muscles for the SS-F treatment. Meanwhile, the protein carbonyls and thiol groups were significantly decreased as cathepsin B and L activities and FAA content were increased in the ventral and dorsal muscles for the SS-F treatment. l-Histidine and l-lysine accelerated the hydrolysis (inhibit the oxidation) of protein and lipids in dry-salted grass carp, illustrating that l-histidine and l-lysine will be a positive approach to develop healthier meat products.