Atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)-reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitors

RSC Adv. 2018 Jan 12;8(6):2851-2857. doi: 10.1039/c7ra12108c.

Abstract

This study evaluates DC-pulse nitrogen atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)-reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitor applications. X-ray photoelectron spectroscopy (XPS) indicates decreased oxygen content (mainly, C-O bonding content) after nitrogen APPJ processing owing to the oxidation and vaporization of ethyl cellulose. Nitrogen APPJ processing introduces nitrogen doping and improves the hydrophilicity of the CNT-rGO nanocomposites. Raman analysis indicates that nitrogen APPJ processing introduces defects and/or surface functional groups on the nanocomposites. The processed CNT-rGO nanocomposites on carbon cloth are applied to the electrodes of H2SO4-polyvinyl alcohol (PVA) gel-electrolyte supercapacitors. The best achieved specific (areal) capacitance is 93.1 F g-1 (9.1 mF cm-2) with 15 s APPJ-processed CNT-rGO nanocomposite electrodes, as evaluated by cyclic voltammetry under a potential scan rate of 2 mV s-1. The addition of rGOs in CNTs in the nanoporous electrodes improves the supercapacitor performance.