Enhanced bioconversion of hydrogen and carbon dioxide to methane using a micro-nano sparger system: mass balance and energy consumption

RSC Adv. 2018 Jul 25;8(47):26488-26496. doi: 10.1039/c8ra02924e. eCollection 2018 Jul 24.

Abstract

Simultaneous CO2 removal with renewable biofuel production can be achieved by methanogens through conversion of CO2 and H2 into CH4. However, the low gas-liquid mass transfer (k L a) of H2 limits the commercial application of this bioconversion. This study tested and compared the gas-liquid mass transfer of H2 by using two stirred tank reactors (STRs) equipped with a micro-nano sparger (MNS) and common micro sparger (CMS), respectively. MNS was found to display superiority to CMS in methane production with the maximum methane evolution rate (MER) of 171.40 mmol/LR/d and 136.10 mmol/LR/d, along with a specific biomass growth rate of 0.15 d-1 and 0.09 d-1, respectively. Energy analysis indicated that the energy-productivity ratio for MNS was higher than that for CMS. This work suggests that MNS can be used as an applicable resolution to the limited k L a of H2 and thus enhance the bioconversion of H2 and CO2 to CH4.