The Conundrum of the PFOA human half-life, an international collaboration

Regul Toxicol Pharmacol. 2022 Jul:132:105185. doi: 10.1016/j.yrtph.2022.105185. Epub 2022 May 7.

Abstract

The Steering Committee of the Alliance for Risk Assessment (ARA) opened a call for scientists interested in resolving what appeared to be a conundrum in estimating of the half-life of perfluorooctanoate (PFOA) in humans. An Advisory Committee was formed from nominations received and a subsequent invitation led to the development of three small independent working groups to review appropriate information and attempt a resolution. Initial findings were shared among these groups and a conclusion developed from the ensuing discussions. Many human observational studies have estimated the PFOA half-life. Most of these studies note the likely occurrence of unmonitored PFOA exposures, which could inflate values of the estimated PFOA half-life. Also, few of these studies estimated the half-life of PFOA isomers, the branched chains of which likely have shorter half-lives. This could deflate values of the estimated linear PFOA half-life. Fortunately, several studies informed both of these potential problems. The majority opinion of this international collaboration is that the studies striking the best balance in addressing some of these uncertainties indicate the likely central tendency of the human PFOA half-life is less than 2 years. The single best value appears to be the geometric mean (GM) of 1.3 years (Zhang et al., 2013, Table 3), based on a GM = 1.7 years in young females (n = 20) and GM = 1.2 years in males of all ages and older females (n = 66). However, a combined median value from Zhang et al. (2013) of 1.8 years also adds value to this range of central tendency. While the Collaboration found this study to be the least encumbered with unmonitored PFOA exposures and branched isomers, more studies of similar design would be valuable. Also valuable would be clarification around background exposures in other existing studies in case adjustments to half-life estimates are attempted.

MeSH terms

  • Caprylates* / toxicity
  • Female
  • Fluorocarbons* / toxicity
  • Half-Life
  • Humans
  • Male
  • Risk Assessment

Substances

  • Caprylates
  • Fluorocarbons
  • perfluorooctanoic acid