Comparison of accuracy of intraocular lens power calculation for eyes with an axial length greater than 29.0 mm

Int Ophthalmol. 2022 Jul;42(7):2029-2038. doi: 10.1007/s10792-021-02194-1. Epub 2022 May 10.

Abstract

Purpose: To evaluate and compare the accuracy of six different formulas (Emmetropia Verifying Optical version 2.0, Kane, SRK/T, Barrett Universal II, Haigis and Olsen) in intraocular lens (IOL) power calculation for extremely long eyes.

Methods: Retrospective case-series. Seventy-three eyes with axial length (AL) ≥ 29.0 mm and underwent phacoemulsification cataract surgery with Rayner (Hove, UK) 920H IOL implantation from January 2018 to March 2020 were included. Prediction errors (PE) were calculated and compared between different formulas to evaluate the accuracy of formulas. Multiple regression analysis was performed to investigate factors associated with the PE.

Results: The Kane formula had mean prediction error close to zero (- 0.01 ± 0.51 D, P = 0.841), whereas the EVO 2.0, SRK/T, Barrett Universal II, Haigis and Olsen formulas produced hyperopic outcomes (all P < 0.001). The median absolute error [inter-quartile range] produced by the EVO 2.0, Kane, Barrett Universal II and Olsen formulas showed no significant difference (0.33 D [0.48], 0.30 D [0.44], 0.34 D [0.39], 0.29 D [0.37], respectively, pairwise comparison P > 0.05), but was significantly lower than that of the SRK/T and Haigis formulas (0.85 D [0.66], 0.80 D [0.54], respectively, pairwise comparison P < 0.001). The AL and the PE produced by the SRK/T formula were significantly positively correlated in extremely myopic eyes (β = 0.248, P < 0.001), whereas the trend was not demonstrated in other formulas.

Conclusions: For cataract patients with axial length greater than 29.0 mm, the accuracy of the EVO 2.0, Kane, Barrett Universal II and Olsen formulas is comparable and significantly better than that of the SRK/T and Haigis formulas.

Keywords: Cataract surgery; Extremely long eye; Intraocular lens power calculation.

MeSH terms

  • Axial Length, Eye
  • Biometry
  • Cataract* / complications
  • Humans
  • Lenses, Intraocular*
  • Optics and Photonics
  • Phacoemulsification*
  • Refraction, Ocular
  • Retrospective Studies
  • Visual Acuity