Impact of optimal vaccination and social distancing on COVID-19 pandemic

Math Comput Simul. 2022 Oct:200:285-314. doi: 10.1016/j.matcom.2022.04.025. Epub 2022 Apr 30.

Abstract

The first COVID-19 case was reported at Wuhan in China at the end of December 2019 but till today the virus has caused millions of deaths worldwide. Governments of each country, observing the severity, took non-pharmaceutical interventions from the very beginning to break the chain of higher transmission. Fortunately, vaccines are available now in most countries and people are asked to take recommended vaccines as precautionary measures. In this work, an epidemiological model on COVID-19 is proposed where people from the susceptible and asymptomatically infected phase move to the vaccinated class after a full two-dose vaccination. The overall analysis says that the disease transmission rate from symptomatically infected people is most sensitive on the disease prevalence. Moreover, better disease control can be achieved by vaccination of the susceptible class. In the later part of the work, a corresponding optimal control problem is considered where maintaining social distancing and vaccination procedure change with time. The result says that even in absence of social distancing, only the vaccination to people can significantly reduce the overall infected population. From the analysis, it is observed that maintaining physical distancing and taking vaccines at an early stage decreases the infection level significantly in the environment by reducing the probability of becoming infected.

Keywords: COVID-19; Epidemic model; Optimal control; Social distancing; Vaccination.