Consecutive seasonal effect on yield and water productivity of drip deficit irrigated sorghum in saline soils

Saudi J Biol Sci. 2022 Apr;29(4):2683-2690. doi: 10.1016/j.sjbs.2021.12.045. Epub 2021 Dec 23.

Abstract

Drought stress destructively affects the growth and productivity of sorghum crop, especially under saline soils. Therefore, Field trials were performed to determine the influence of water stress on water productivity (water productivity for grain, (G-WP) and water productivity for forage, (F-WP), yield of sorghum and soil properties in salt-affected soil (8.20 dS m-1) under different sowing dates and irrigation regimes. The summer sowing (SS) was performed on 1 April while fall sowing (FS) was established on 2 August. The irrigation regimes were; 100, 90, 80, and 70% of crop evapotranspiration (ETc). The findings displayed that the fodder and grain yields were increased by 23% and 26% under SS compared to FS over the two seasons 2017 and 2018, respectively. Among irrigation levels, the maximum values of grain and fodder yield were given by 100% of ETc, while a non-significant difference was observed between 100% and 90% of ETc. Moreover, the maximum values of G-WP (1.31%) and F-WP (9.00%) were recorded for 90% of ETc. Interestingly, the soil salinity was decreased in 0-0.6 m depth, and more decline was noted in 0-0.2 m depth using 90% of ETc. The highest salt accumulation withinside the soil profile was recorded under 70% of ETc in comparison to 100% of ETc. Thereupon, under water scarcity, application of 90% of ETc is recommended with SS to save 10% of the applied irrigation water without a significant decrease in grain yield (GY).

Keywords: Drought stress; Plant water status; Soil salinity; Sorghum yields; Sowing date; Water productivity.